Magnetischer Fingerabdruck zeigt Stromverlust in organischen Solarzellen

Herkömmliche Solarzellen aus Silizium werden aufwändig und energieintensiv hergestellt. Organische Solarzellen (OPV) hingegen sind kostengünstiger, produzieren aber bisher noch zu wenig Strom. Woran das liegt, ist bis heute nicht vollständig geklärt. Nun haben Wissenschaftler des Helmholtz-Zentrums Berlin (HZB) eine Methode entwickelt, die Stromverluste anhand des magnetischen Fingerabdrucks der stromtragenden Teilchen nachweist. Die Methode zeigt, dass der Stromfluss in der Photovoltaik-Zelle vom Spin der stromtragenden Teilchen abhängen kann.

Die HZB-Forscher manipulierten auf raffinierte Weise die magnetischen Eigenschaften dieser Teilchen. Gemeinsam mit schottischen Forschern publizieren sie dies in der Zeitschrift Physical Review Letters (10.1103/PhysRevLett.105.176601 / Phys. Rev. Lett. 105, 176601 (2010)).

Strom aus Plastik-Solarzellen
Da organische Solarzellen aus Kohlenstoff-Verbindungen, also Kunststoffen, bestehen, werden sie auch Plastik-Solarzellen genannt. Das Herz der Zelle bildet eine nur 100-Millionstel Millimeter dünne Schicht, die aus zwei Teilen besteht: Polymere und fußballförmige Fullerene. Beide sind miteinander vermischt. Fällt Licht auf die Mischschicht, wird das Polymer in einen angeregten Zustand versetzt, den man Exziton nennt. Trifft ein Exziton auf ein "Fußballmolekül" springt ein Elektron auf das Fulleren und im Polymer verbleibt ein "Loch". Damit Strom fließt, müssen die Elektronen und Löcher zu den Kontakten an den jeweils gegenüberliegenden Seiten der Solarzelle gelangen. Die Elektronen hüpfen über das Fulleren, die Löcher auf der Polymerkette. Die Löcher, Wissenschaftler nennen sie Polaronen, können sich auf diesem Weg gegenseitig behindern und senken dadurch den Wirkungsgrad der Solarzelle. Dieser gibt das Verhältnis zwischen gewonnener elektrischer und von der Sonne eingestrahlter Energie an.
Die Wissenschaftler konnten mit ihrer Methode, der elektrisch detektierten magnetischen Resonanz (EDMR), sichtbar machen, dass die Polaronen sich immer dann behindern, wenn ihr magnetisches Moment (Spin) identisch ist. "Wir konnten diese schon länger vermutete sogenannte Bipolaron-Bildung erstmals sichtbar machen und somit beweisen", sagt Jan Behrends, der während seiner Promotion am HZB-Institut für Silizium-Photovoltaik die Messungen durchgeführt hat.

Grundlegende Erkenntnis zur Verbesserung organischer Solarzellen
Bei der EDMR-Methode manipulieren die Forscher mit Hilfe eines äußeren Magnetfeldes und einer Mikrowelle den Spin der Polaronen. Durch einen Resonanzeffekt lässt sich der vorher zufällig verteilte Spin wie eine Kompassnadel drehen und gezielt beeinflussen. Die Messdaten zeigten, dass der Strom frei fließt, wenn die winzigen Magnete entgegengesetzt ausgerichtet sind und bei gleicher Ausrichtung blockiert wird. Dank des neuen experimentellen Aufbaus der ursprünglich für Silizium entwickelten Methode gelang es den Forschern, solche Stromverluste in Plastiksolarzellen bei Raumtemperatur nachzuweisen. "Mit dieser grundlegenden Erkenntnis könnten organische Solarzellen weiter verbessert werden, zum Beispiel indem man gezielt Kunststoffe entwickelt, die keine Spinblockade aufweisen", sagt Projektleiter Dr. Klaus Lips.

Materialforschung für Energietechnologien in Berlin; Schwerpunkt Dünnschichtsolarzellen
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2.500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1.100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof. Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

04.11.2010 | Quelle: HZB | solarserver.de © EEM Energy & Environment Media GmbH

Beliebte Artikel

Schließen