Augsburger Chemiker synthetisierten metallorganische Gerüstverbindungen mit Einsatzmöglichkeiten in der Photovoltaik und medizinischen Sensorik

Chemiker am Institut für Physik der Universität Augsburg berichten im renommierten Fachjournal "Advanced Functional Materials" von neuartigen porösen Verbindungen, deren Halbleiter-Eigenschaften gezielt maßgeschneidert werden können.

Halbleiter, die niedrige elektronische Bandlücken mit einem für Moleküle zugänglichen System aus nano-dimensionierten Kanälen kombinieren, ermöglichen die Entwicklung von neuartigen multifunktionalen Materialien für vielfältige technische Anwendungen.

Poröse Materialien mit riesiger innerer Oberfläche
Metallorganische Gerüstverbindungen werden in einem Baukastensystem erzeugt, in dem sich poröse Materialien für spezielle Anwendungen gezielt herstellen lassen. Wie Volkmers Kollegen Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer vom Augsburger Lehrstuhl für Experimentalphysik V/EKM durch temperaturabhängige dielektrische Messungen nun zeigen konnten, lässt sich die elektronische Bandlücke des Materials MFU-4 – die entscheidende Größe für die elektrische Leitfähigkeit – durch gezielten Austausch von Metall-Ionen in weiten Bereichen anpassen.
So wird beispielsweise durch den Austausch von Zink- gegen Cobalt-Ionen die elektronische Bandlücke von ursprünglich 3.0 auf ca. 1.8 Elektronenvolt (eV) herabgesetzt. Die resultierende Verbindung – Co-MFU-4 – nähert sich damit in Bezug auf die elektronischen Eigenschaften bekannten Halbleiter-Verbindungen wie etwa Selen oder Cadmiumselenid an, weist aber im Gegensatz zu diesen kompakten anorganischen Halbleitern eine riesige innere Oberfläche von größer als 1000 m2/g auf, was vielfältige Anwendungsperspektiven eröffnet.
Vergleichbare Oberflächen und Poren zeigen sonst nur sogenannte Zeolithe, deren intrinsische Bandlücken aber bei wesentlich höheren Energiewerten über 5 eV liegen und die sich deshalb wie Isolatoren verhalten.
Durch quantenmechanische Berechnungen von Dr. Juan Sastre – theoretischer Chemiker an der Polytechnischen Universität Valencia – konnten die elektronischen Eigenschaften für die ungewöhnliche Material-Kombination aus Poren und elektrischer Leitfähigkeit simuliert und genau vorhergesagt werden.

Sammlung von Energie aus Sonnenlicht mit höchster Effizienz
Sastres Berechnungen erlauben tiefere Einblicke in Struktur- Eigenschaftsbeziehungen von metallorganischen Gerüstverbindungen und gezielte Vorhersagen über die Auswirkungen struktureller Modifikationen auf die elektronischen Eigenschaften.
"Dadurch wird es möglich, die Bandlücke von porösen Gerüstverbindungen gezielt einzustellen. Dies wiederum ermöglicht es, z. B. Energie aus Sonnenlicht mit höchster Effizienz zu sammeln und in chemische Energie und Materialien umzuwandeln, beispielsweise in der photokatalytischen Herstellung von Wasserstoff aus Wasser oder der Fixierung von Kohlendioxid", so Volkmer.
Da das poröse MOF-Material von den umzuwandelnden Stoffen vollständig infiltriert wird, ist die Effizienz solcher Umwandlungen vermutlich sehr viel höher als diejenige typischer, bisher verwendeter kompakter Photohalbleiter-Materialien. Darüber hinaus ergeben sich potentielle Anwendungen im Bereich der Sensorik: Die zu analysierenden Moleküle dringen in die Gerüstverbindung ein und verursachen eine Veränderung der Gitterstruktur und -symmetrie. Die damit einhergehenden Änderungen der Elektronenstruktur können dann – dank halbleitender Eigenschaften – auf direktem elektrischen Wege detektiert werden.

29.04.2014 | Quelle: Lehrstuhl für Festkörperchemie; Universität Augsburg | solarserver.de © EEM Energy & Environment Media GmbH

Beliebte Artikel

Schließen