Photochemie: Likat entwickelt neues Katalysatorsystem

Zu sehen ist der neue Photokatalysator, den Forschende am Leibniz-Institut für Katalyse in Rostock entwickelt haben.Foto: Xuewen Guo / Likat
Blaues Licht aktiviert den neuen Photokatalysator am besten.
Als Schlüssel zu umweltschonenden chemischen Reaktionen erweist sich zunehmend die Photochemie. Unter milden Temperaturen und Normaldruck sollen künftig Photonen – die Energie des Lichts – chemische Reaktionen bewirken.

Ein Team um Esteban Mejía vom Leibniz-Institut für Katalyse in Rostock, Likat, und Dengxu Wang von der Shandong Universität in Jinan hat jetzt ein modulares System entwickelt, mit dem sich wie aus einem Lego-Baukasten nahezu beliebig ein passender Photokatalysator für viele Verfahren in der organischen Chemie zusammenstellen lassen.

Der neue Katalysator ist ein Silikon-Material, das die Likat-Chemiker mit unterschiedlichen Fluoreszenzfarbstoffen versetzen: gelb, grün, rot oder blau. „Da jede Farbe zu einer bestimmten Wellenlänge im Lichtspektrum gehört, können wir damit wunderbar den Energiebereich bestimmen, in dem der Katalysator aktiv werden soll“, erläutert Esteban Mejía, Forschungsleiter für Polymere und Katalyse am Likat.

Metallfrei und milde Reaktionsbedingungen

„Aktiv werden“ heißt hier vor allem: Der Photokatalysator absorbiert aus dem Licht Photonen, deren Energie er an die Reaktionspartner weitergibt, und zwar exakt im Energiebereich der jeweiligen Farbe, mit der er versetzt wurde. Auf diese Weise können Chemiker Ausgangsstoffe so präzise aktivieren, dass sie ausnahmslos mit den gewünschten Reaktionspartnern neue chemische Bindungen eingehen. Und kaum Nebenprodukte erzeugen.

Im Unterschied zu üblichen Prozessen der organischen Chemie verfügt das neue Katalysatorsystem über entscheidende Vorteile. Es arbeitet bei Raumtemperatur und Atmosphärendruck, also unter ungewöhnlich milden Bedingungen, wie Mejía sagt. „Außerdem enthält der Katalysator keine Metalle. Und er kann leicht zurückgewonnen werden.“

Der Katalysator ist ein Silikon-Derivat (Abkömmling) namens POSS, er besteht aus organischen und anorganischen Bausteinen, weshalb Chemiker ihn als „hybrid“ bezeichnen. Charakteristisch für das Material ist eine Art Rückgrat aus Sauerstoff-Silizium-Sauerstoff-Bindungen. Mejía: „Das macht den Katalysator thermisch und chemisch sehr stabil, so wie Sand, der ja auch hauptsächlich aus Silizium besteht.“

Poren im Photokatalysator als Reaktionsraum

POSS ist hochporös und damit ideal für die Katalyse. „Die Poren bieten geeignete Nischen, in denen sich angeregte Ausgangsstoffe nahe genug kommen, um miteinander zu reagieren“, sagt Mejía. Auch ästhetisch spricht der Katalysator an: Unter Lichteinwirkung, die obligatorisch für Photokatalyse ist, beginnt er in den jeweiligen Farben, die ihm beigegeben wurden, zu fluoreszieren.

Eine wichtige Reaktion ist dabei die C-H-Derivatisierung, um die Moleküle chemisch zu aktivieren, wie Dr. Mejía erläutert. Hier setzt das neue Verfahren ein. Üblicherweise braucht es für das Aufbrechen der C-H-Bindung ein Metallatom, das vom Katalysator bereitgestellt wird. Der neue Photokatalysator aus dem Likat enthält aber keinerlei Metall. Die Forscher setzten stattdessen auf seine hochporöse Struktur. „Wir wussten außerdem, dass unser Material gut mit Sauerstoff reagiert.“ Und den benötigt die Reaktion als Oxidationsmittel.

Tatsächlich funktioniert die Reaktion, und inzwischen ist den Chemikern auch der Ablauf klar. „Der Katalysator absorbiert aus dem Licht ein Photon und überträgt es an den Sauerstoff“, erläutert Mejía. „Dabei bildet sich ein superreaktives Sauerstoff-Teilchen.“ Chemiker nennen es „Singlet Oxygen“. Dieser energiereichen Spezies gelingt es, die Moleküle der organischen Ausgangsstoffe anzugreifen, somit zu aktivieren und für die nächsten Schritte vorzubereiten. Im Labor gelang dieser Vorgang am besten, wenn die Proben mit blauem Licht bestrahlt wurden. Auch der Katalysator wurde mit einem blauen Fluoreszenzfarbstoff versetzt.

Am Ende spart diese Vorgehensweise eine komplette Reaktionsstufe ein. Die Arbeit wird gewissermaßen in einem Schritt erledigt: Ausgangsstoffe aktivieren und derivatisieren sowie die Derivate mit speziellen Funktionen versehen. Das verbessert die ökologische Bilanz solcher Prozesse.

12.11.2021 | Quelle: Likat | solarserver.de © Solarthemen Media GmbH

Beliebte Artikel

Schließen