Metallhydrid-Speicher für Wasserstoff: Polymere verbessern Lebensdauer

Zu sehen sind Rasterelektronenmikroskop-Aufnahmen vom Metallhydrid-Speicher für Wasserstoff.Foto: Hereon / Clarissa Abetz
Beispiele für die verwendete Mikroskopietechnik.
Ein Team des Helmholtz-Zentrums Hereon konnte mit einer Mikroskopietechnik sichtbar machen, wie sich polymerumhüllte Metallhydrid-Partikel beim Be- und Entladen mit Wasserstoff im Detail verhalten.

Die gängigen Druckgastanks für Wasserstofffahrzeuge sind sehr groß und aufgrund ihrer zylindrischen Geometrie nicht raumsparend in Fahrzeuge zu integrieren. Deshalb arbeitet die Fachwelt an der Alternative Metallhydrid-Speicher. Die zu feinen Pulvern gemahlenen Metallverbindungen können Wasserstoff in erstaunlichen Mengen binden: Ein Metallhydrid-Speicher kann bis zu 50 % mehr Wasserstoff aufnehmen als ein gleich großer 700-bar-Drucktank.

Das Helmholtz-Zentrum Hereon hat ein effizientes Metallhydrid-System entwickelt und weltweit patentiert. „Dabei kombinieren wir mehrere Hydride miteinander“, erläutert Thomas Klassen, Leiter des Hereon-Instituts für Werkstoffforschung und Professor an der Helmut-Schmidt-Universität in Hamburg. „Geben diese Hydride den gespeicherten Wasserstoff beim Entladen ab, reagieren sie miteinander, wobei Energie frei wird.“ Dadurch sinkt die Temperatur, die zum Entladen nötig ist – das System wird energieeffizienter.

Schutz vor Sauerstoff

Allerdings gibt es zwei Einschränkungen. Zum einen dürfen sich die feinen Körnchen beim Beladen mit Wasserstoff nicht allzu weit voneinander entfernen. Ansonsten können sie später beim Entladen nicht mehr so gut miteinander reagieren. Zum anderen kann sich Sauerstoff an die Metallhydrid-Körnchen binden und sie damit regelrecht blockieren. „Beide Probleme können entschärft werden, indem wir die Körnchen mit einem Polymer ummanteln“, sagt Volker Abetz, Leiter des Hereon-Instituts für Membranforschung und Professor an der Universität Hamburg. „Dieses Polymer lässt nur Wasserstoff passieren und keinen Sauerstoff, und es verhindert eine allzu starke Entmischung der unterschiedlichen Metallhydride.“

Zwar ist dieser Polymer-Trick bereits seit einiger Zeit im Labor bekannt. Doch was sich dabei genau abspielt, war bis dato unklar. Durch eine ausgefeilte Bildgebung konnte das Team um Abetz und Klassen das Geschehen nun sichtbar machen. Zunächst stellten die Fachleute mit einer Art Ionenfräse extrem feine und dünnschichtige Metallhydrid-Proben her. Diese untersuchten sie dann mit einer speziellen Rasterelektronenmikroskop-Technik. Das Ergebnis: hochaufgelöste Bilder der mikrometerkleinen, vom Polymer umhüllten Metallhydrid-Körnchen, und zwar sowohl im beladenen als auch im entladenen Zustand.

Polymere im Metallhydrid-Speicher machen exzellenten Job

„Da die Methode elementspezifisch ist, lassen sich die verschiedenen Metallhydrid-Sorten gut voneinander unterscheiden“, erklärt Abetz. Wie die Messungen zeigten, bildeten die Polymerhüllen einen guten Schutz gegen den reaktivem und in diesem Prozess hinderlichen schädlichen Sauerstoff. „Außerdem konnten wir beobachten, dass sie tatsächlich eine Vergröberung und Entmischung der verschiedenen Metallhydrid-Komponenten verhindern“, ergänzt Klassen. „Über viele Zyklen hinweg kann das System schnell mit Wassersoff be- und entladen werden, die Polymere machen also einen exzellenten Job.“  

Auf der Basis der neuen Erkenntnisse können die Hereon-Fachleute die polymerummantelten Metallhydrid-Speicher nun weiter optimieren. Unter anderem wollen sie nach besseren, maßgeschneiderten Polymeren suchen, mit denen sich die Hydrid-Körnchen noch effektiver umhüllen lassen. Und: Im Rahmen eines Nachfolgeprojekts wollen sie gemeinsam mit Partnern das Konzept der Polymer-Ummantelung für stationäre Wasserstoffspeicher erproben und dadurch deren Haltbarkeit deutlich erhöhen.

10.2.2022 | Quelle: Helmholtz-Zentrum Hereon | solarserver.de © Solarthemen Media GmbH

Schließen