Entropische Kristalle als Speicher für grünes Methan
Am Schweizer Forschungsinstitut Empa wollen Wissenschaftler:innen Kristalle erzeugen, die sich als Speicher für synthetisches Methan aus CO2 und grünem Wasserstoff eignen. Wie das Empa mitteilte, machen sich die Forschenden dabei das Prinzip der Entropie zu eigen. Dieses besagt, dass in der Natur viele Prozesse zur Unordnung streben. Kristalle gelten dagegen als das schiere Gegenteil von Unordnung. In einer Kristallstruktur sind alle Gitterbausteine sauber und auf kleinstmöglichem Volumen dicht nebeneinander sortiert. Umso bizarrer wirkt die Idee, man könne Kristalle durch die Kraft der Entropie stabilisieren und so eine neue Materialklasse erschaffen. Doch genau das wird an der Empa versucht.
Entropie-stabilisierte Materialien sind ein noch junges Forschungsgebiet. Den Anfang machten 2004 sogenannte Hochentropie-Legierungen, also Gemische von fünf oder mehr Elementen, die sich untereinander vermengen lassen. Wenn die Mischung gelingt und alle Elemente homogen in der Legierung verteilt sind, zeigen sich bisweilen besondere Eigenschaften, die nicht von den einzelnen Zutaten herrühren, sondern von deren Mixtur. Die Wissenschaftler nennen dies «Cocktail-Effekte».
Kristalle, die es noch nie gab
Seit 2015 ist bekannt, dass sich sogar keramische Kristalle durch die «Kraft der Unordnung» stabilisieren lassen. Es passen auch übergrosse und zu kleine Bausteine in den Kristall, die ihn im Normalfall zerstören würden. Auf diese Weise gelang es dem Empa-Team bereits neun verschiedene Atome in einen Kristall einsetzen. Der Vorteil: Selbst, wenn solche Kristalle hohen Temperaturen ausgesetzt sind, bleiben sie stabil – denn eine «Umsortierung» würde zu grösserer Ordnung führen. Das natürliche Streben nach maximaler Unordnung stabilisiert also die ungewöhnliche Kristallstruktur – und damit das gesamte Material – auch unter Extrembedingungen.
«Bei bis zu vier Komponenten im Kristall ist alles noch normal, ab fünf Komponenten ändert sich die Welt», erläutert Michael Stuer, Forscher in der Empa-Abteilung «High Performance Ceramics». Seit der in Luxemburg aufgewachsene Forscher 2019 an die Empa kam, bearbeitet er das Forschungsfeld der Hochentropie-Kristalle. «Diese Materialklasse eröffnet uns eine Vielzahl neuer Chancen», sagt Stuer. «Wir können mit Hilfe der Entropie zum Beispiel Kristalle stabilisieren, die sonst aufgrund innerer Spannungen zerfallen würden. Und wir können hochaktive Kristalloberflächen schaffen, die es vorher noch nie gab, und nach interessanten Cocktail-Effekten suchen.»
Gemeinsam mit seiner Kollegin Amy Knorpp macht sich Stuer nun auf den Weg ins Unbekannte. Die beiden sind Spezialisten für die Herstellung von feinem Kristallpulver, und sie haben an der Empa Kolleginnen und Kollegen für Röntgen- und Oberflächenanalytik, um die hergestellten Proben genauestens zu charakterisieren. Mit deren Hilfen will Michael Stuer nun in der internationalen Szene vorne mitspielen. «Die Zahl der Publikationen zum Thema Hochentropie-Kristalle steigt gerade sehr stark. Und wir möchten von Beginn an dabei sein», sagt der Forscher.
Michel Stuer und Amy Knorpp konzentrieren sich auf katalytisch aktive Materialien. Bei der chemischen Reaktion, für die sie sich interessieren, geht es um die Verbindung von CO2 und Wasserstoff zu Methan. Aus einem Treibhausgas soll also ein nachhaltiger, speicherbarer Brennstoff werden. «Wir wissen, dass CO2-Moleküle auf bestimmten Oberflächen besonders gut adsorbiert werden und die gewünschte Reaktion dann leichter und schneller abläuft», sagt Amy Knorpp. «Nun versuchen wir entropische Kristalle herzustellen, an deren Oberflächen solche hochaktiven Bereiche existieren.»
9.8.2022 | Quelle: Empa | solarserver.de © Solarthemen Media GmbH